The expansion of 3D printing into rapid manufacturing applications and strong market demand for next-generation oligomers has been coupled with an increased demand for materials with a wide variety of physical properties. Rigid materials, with high tensile strength and low elongation, are readily available, but offerings of tough, flexible materials with high elongation are more limited.

Aside from the technical challenges of developing these types of materials, another potential source driving this limitation is the challenge associated with printing flexible parts with certain types of 3D printers.1 When the printing process involves movement of parts or printer hardware in the x or y direction, as it does with some SLA or DLP type printers, forces are exerted on the part in situ that could cause an overly flexible part to move out of alignment, separate from the build platform, or even break resulting in poor resolution and failed prints. Thus, in the development of new materials for 3D printing, especially flexible ones, it becomes important to evaluate how well the material can withstand these types of forces.

In a new study, and resulting white paper, the benefits of new oligomers are investigated in free-radical curing acrylate formulations and free radical/cationic curing acrylate/epoxy hybrid formulations. In addition, the mechanical and thermal properties of the formulations are revealed.

The purpose of this study had two major goals. The first was to evaluate the mechanical properties of newly developed (meth)acrylate oligomers that have the potential to meet the demand for tough, flexible 3D printing materials. This evaluation included a comparison to materials currently on the market that are advertised as being tough or flexible.

The second goal was to identify a method that would allow for an evaluation of the oligomers’ ability to resist the forces that act upon parts during the printing process. This resistance, in turn, relates to printability or the probability of having a successful printing outcome. For this latter goal, both relative rate of (meth)acrylate conversion and the change in the material’s complex modulus during cure were examined. These methods were used to evaluate how quickly the material’s green state properties were reached and whether those properties would meet a minimum threshold required to survive the printing process.

For this work, four urethane (meth)acrylate oligomers (UAO) of varying structures were synthesized to explore their suitability for use in 3D printing formulations, especially those designed to generate flexible shapes or parts. The oligomers were synthesized in 35-40% reactive diluent to produce a preformulated resin mixture and then further formulated into the model 3D printing formula found in Table 1 below.

Table 1.

Component 
Wt%
UAO
55.0
Reactive Monomers
40.0
Photoinitiator
3.0
Additives
2.0

Table 1: Model 3D Printing Formula

Three commercially available (meth)acrylate based 3D printing resins (CR) were also examined for comparative purposes and were used as received. The viscosity of all resin formulations was measured using a Brookfield CAP2000+ viscometer at 25⁰C.  



3D ಮುದ್ರಣವನ್ನು ಶೀಘ್ರ ಉತ್ಪಾದನಾ ಅನ್ವಯಿಕೆಗಳಿಗೆ ವಿಸ್ತರಿಸುವುದು ಮತ್ತು ಮುಂದಿನ ಪೀಳಿಗೆಯ ಆಲಿಗೋಮರ್ಗಳಿಗೆ ಪ್ರಬಲವಾದ ಮಾರುಕಟ್ಟೆ ಬೇಡಿಕೆಯು ಹಲವಾರು ವೈವಿಧ್ಯಮಯ ದೈಹಿಕ   ಗುಣಲಕ್ಷಣಗಳೊಂದಿಗೆ ಸಾಮಗ್ರಿಗಳ ಬೇಡಿಕೆಯನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಹೆಚ್ಚಿನ ಕರ್ಷಕ ಶಕ್ತಿ ಮತ್ತು ಕಡಿಮೆ ಉದ್ದನೆಯೊಂದಿಗಿನ ಕಠಿಣವಾದ ವಸ್ತುಗಳು ಸುಲಭವಾಗಿ ಲಭ್ಯವಿರುತ್ತವೆ, ಆದರೆ ಹೆಚ್ಚಿನ ಉದ್ದನೆಯೊಂದಿಗಿನ  ಕಠಿಣ, ಹೊಂದಿಕೊಳ್ಳುವ ವಸ್ತುಗಳ ಕೊಡುಗೆಗಳು ಹೆಚ್ಚು ಸೀಮಿತವಾಗಿವೆ. 
ಈ ರೀತಿಯ ವಸ್ತುಗಳನ್ನು ಅಭಿವೃದ್ಧಿಪಡಿಸುವ ತಾಂತ್ರಿಕ ಸವಾಲುಗಳ ಹೊರತಾಗಿ, ಈ ಮಿತಿಯನ್ನು ಚಾಲನೆ ಮಾಡುವ ಮತ್ತೊಂದು ಸಂಭಾವ್ಯ ಮೂಲವೆಂದರೆ ಕೆಲವು ಪ್ರಕಾರದ 3D ಮುದ್ರಕಗಳೊಂದಿಗೆ ಹೊಂದಿಕೊಳ್ಳುವ ಭಾಗಗಳನ್ನು ಮುದ್ರಿಸುವುದರೊಂದಿಗೆ ಸಂಬಂಧಿಸಿದ ಸವಾಲು. ಮುದ್ರಣ ಪ್ರಕ್ರಿಯೆಯು ಭಾಗಗಳಲ್ಲಿ ಅಥವಾ ಪ್ರಿಂಟರ್ ಯಂತ್ರಾಂಶವನ್ನು x ಅಥವಾ y ದಿಕ್ಕಿನಲ್ಲಿ, ಕೆಲವು ಎಸ್ಎಲ್ಎ ಅಥವಾ ಡಿಎಲ್ಪಿ ಟೈಪ್ ಮುದ್ರಕಗಳಂತೆ ಮಾಡುವಂತೆ, ಸೈಡ್ನಲ್ಲಿರುವ ಭಾಗವನ್ನು ಒತ್ತಾಯಿಸಲಾಗುತ್ತದೆ, ಅದು ಜೋಡಣೆಯ ಹೊರಗೆ ಚಲಿಸಲು ವಿಪರೀತವಾಗಿ ಹೊಂದಿಕೊಳ್ಳುವ ಭಾಗವನ್ನು ಉಂಟುಮಾಡಬಹುದು, ನಿರ್ಮಾಣ ಪ್ಲಾಟ್ಫಾರ್ಮ್ನಿಂದ ಪ್ರತ್ಯೇಕವಾಗಿರಬಹುದು ಅಥವಾ ಕಳಪೆ ರೆಸಲ್ಯೂಶನ್ ಮತ್ತು ವಿಫಲವಾದ ಮುದ್ರಣಗಳನ್ನು ಮುರಿಯಬಹುದು . ಹೀಗಾಗಿ, 3D ಮುದ್ರಣಕ್ಕಾಗಿ ಹೊಸ ವಸ್ತುಗಳ ಅಭಿವೃದ್ಧಿಯಲ್ಲಿ, ಅದರಲ್ಲೂ ಸುಲಭವಾಗಿ ಹೊಂದಿಕೊಳ್ಳುವಂತಹವುಗಳು, ಈ ವಿಧದ ಬಲಗಳನ್ನು ವಸ್ತುವು ಹೇಗೆ ತಡೆದುಕೊಳ್ಳಬಹುದು ಎಂಬುದನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವುದು ಮುಖ್ಯವಾಗುತ್ತದೆ. 
ಹೊಸ ಅಧ್ಯಯನದ ಪ್ರಕಾರ, ಮತ್ತು ಬಿಳಿ ಕಾಗದದ ಪರಿಣಾಮವಾಗಿ, ಹೊಸ ಆಲಿಗೋಮರ್ಗಳ ಪ್ರಯೋಜನಗಳನ್ನು ಮುಕ್ತ-ಮೂಲಭೂತ ಕ್ಯೂರಿಂಗ್ ಅಕ್ರಿಲೇಟ್ ಸೂತ್ರೀಕರಣಗಳು ಮತ್ತು ಸ್ವತಂತ್ರ ರಾಡಿಕಲ್ / ಕ್ಯಾಟಯಾನಿಕ್ ಕ್ಯೂರಿಂಗ್ ಅಕ್ರಿಲೇಟ್ / ಎಪಾಕ್ಸಿ ಹೈಬ್ರಿಡ್ ಸೂತ್ರೀಕರಣಗಳಲ್ಲಿ ತನಿಖೆ ಮಾಡಲಾಗುತ್ತದೆ. ಇದರ ಜೊತೆಗೆ, ಸೂತ್ರಗಳ ಯಾಂತ್ರಿಕ ಮತ್ತು ಉಷ್ಣ ಲಕ್ಷಣಗಳು ಬಹಿರಂಗಗೊಳ್ಳುತ್ತವೆ. 
ಈ ಅಧ್ಯಯನದ ಉದ್ದೇಶವು ಎರಡು ಪ್ರಮುಖ ಗುರಿಗಳನ್ನು ಹೊಂದಿತ್ತು. ಮೊದಲನೆಯದು, ಹೊಸದಾಗಿ ಅಭಿವೃದ್ಧಿ ಹೊಂದಿದ (ಮೆಥ್) ಅಕ್ರಿಲೇಟ್ ಆಲಿಗೋಮರ್ಗಳ ಯಾಂತ್ರಿಕ ಗುಣಗಳನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವುದು, ಅದು ಕಠಿಣವಾದ, ಹೊಂದಿಕೊಳ್ಳುವ 3D ಮುದ್ರಣ ಸಾಮಗ್ರಿಗಳ ಬೇಡಿಕೆಯನ್ನು ಪೂರೈಸುವ ಸಾಮರ್ಥ್ಯವನ್ನು ಹೊಂದಿದೆ. ಈ ಮೌಲ್ಯಮಾಪನವು ಪ್ರಸ್ತುತ ಮಾರುಕಟ್ಟೆಯಲ್ಲಿರುವ ವಸ್ತುಗಳ ಹೋಲಿಕೆಗೆ ಒಳಪಟ್ಟಿರುತ್ತದೆ, ಅದನ್ನು ಕಠಿಣ ಅಥವಾ ಹೊಂದಿಕೊಳ್ಳುವಿಕೆಯಂತೆ ಪ್ರಚಾರ ಮಾಡಲಾಗುತ್ತದೆ. 
ಮುದ್ರಣ ಪ್ರಕ್ರಿಯೆಯ ಸಮಯದಲ್ಲಿ ಭಾಗಗಳಲ್ಲಿ ಕಾರ್ಯನಿರ್ವಹಿಸುವ ಶಕ್ತಿಯನ್ನು ವಿರೋಧಿಸುವ ಓಲಿಗೋಮರ್ಗಳ ಸಾಮರ್ಥ್ಯದ ಮೌಲ್ಯಮಾಪನಕ್ಕೆ ಅನುಮತಿಸುವ ವಿಧಾನವನ್ನು ಗುರುತಿಸುವುದು ಎರಡನೆಯ ಗೋಲು. ಈ ಪ್ರತಿರೋಧ, ಪ್ರತಿಯಾಗಿ, ಮುದ್ರಿಸುವಿಕೆ ಅಥವಾ ಯಶಸ್ವಿ ಮುದ್ರಣ ಫಲಿತಾಂಶವನ್ನು ಹೊಂದಿರುವ ಸಂಭವನೀಯತೆಗೆ ಸಂಬಂಧಿಸಿದೆ. ಈ ಎರಡನೆಯ ಉದ್ದೇಶಕ್ಕಾಗಿ, ಅಕ್ರಿಲೇಟ್ ಪರಿವರ್ತನೆ ಮತ್ತು ಮೆಟೀರಿಯಲ್ನ ಸಂಕೀರ್ಣ ಮಾಡ್ಯುಲಸ್ನಲ್ಲಿರುವ ಬದಲಾವಣೆಯ ಎರಡೂ ಸಂಬಂಧಿತ ದರವನ್ನು ಪರೀಕ್ಷಿಸಲಾಯಿತು. ವಸ್ತುಗಳ ಹಸಿರು ರಾಜ್ಯ ಗುಣಲಕ್ಷಣಗಳು ಎಷ್ಟು ಬೇಗನೆ ತಲುಪಿದವು ಮತ್ತು ಈ ಗುಣಲಕ್ಷಣಗಳು ಮುದ್ರಣ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಉಳಿದುಕೊಳ್ಳಲು ಅಗತ್ಯವಿರುವ ಕನಿಷ್ಟ ಮಿತಿಗಳನ್ನು ಪೂರೈಸುತ್ತವೆಯೇ ಎಂದು ಮೌಲ್ಯಮಾಪನ ಮಾಡಲು ಈ ವಿಧಾನಗಳನ್ನು ಬಳಸಲಾಗುತ್ತಿತ್ತು.
I BUILT MY SITE FOR FREE USING